

Navy NDT&E Needs

Presented to

NASA In-Space Inspection Workshop

15 July 2014

Presented by,

Patric Lockhart, Ph.D.

Lead Engineer, Advanced Inspection Methods Developmental Systems Engineering, Code 1521 SENSORS AND SONAR SYSTEMS DEPARTMENT (401) 832-4462, patric.lockhart@navy.mil

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

UNCLASSIFIED Pa

- Navy swim lanes
- □ Challenges
- **□** Composites
- Metals
- □ Coatings
- □ Technology Interests
- **□** Summary

UNCLASSIFIED

DON is the largest branch of the DOD

Navy subs and surface ships

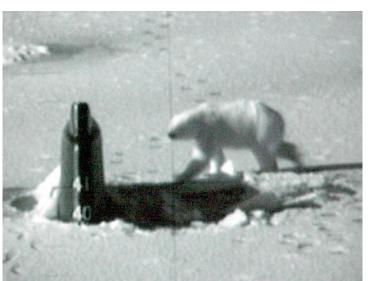
Naval Information Dominance, including satellite support

Naval Air Force

UNCLASSIFIED

Naval NDT&E Challenges

□ Environmental & biological interaction

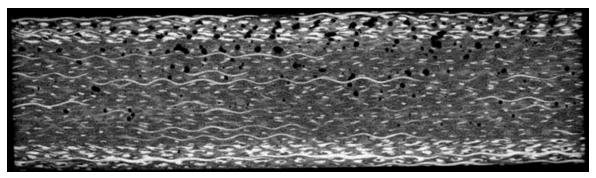

Salt water, biological organism deterrence and safety

□ Thick materials difficult to penetrate for NDT&E

Thick metals & coatings, layered structures, hulls, impeller parts

Large structures and limited maintenance time

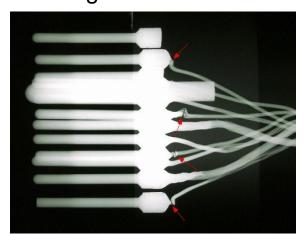
- Time in dock is time not in service (speed with accuracy)
- Dry dock & at-sea inspection



Detect and localize cracks, voids, water intrusion & debonds

- Multi-layered composite systems
 - » Composites materials include fiberglass, quartz, & carbon fiber
- GRE composite covered in a carbon fiber layer
 - » Carbon fiber layer can range from 1 mm to almost an inch
 - » Carbon fiber layer can be on one or both surfaces of composite
- Composite can range from fractions of an inch to several inches thick

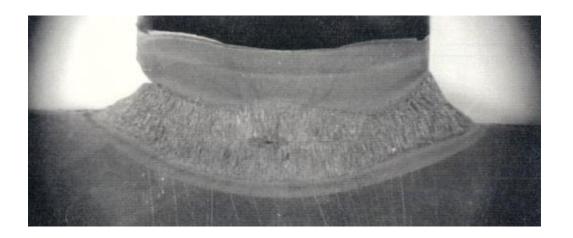
Characterize fiber waviness in thick composites


Detect fatigue cracks in metals near sensitive sensors

No magnets, excessive vibration, etc

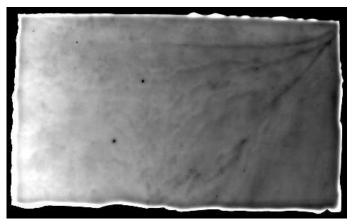
Detect and quantify defects in Friction Stir Welds

- Wormholes, excessive flash, kissing bonds
- Determine degree of sensitization and detect intergranular corrosion in AL-5000 series and austenitic steels
 - In general, after repair, and under a composite coating
- Detect and localize broken conductors inside wires and connectors
 - In air and potting/coatings



Metals Continued

- □ Characterize the degree of cold working around metallic fastener holes
- Detect corroded welds at the base of studs where only the tip of the stud is accessible
- □ Detect metal degradation/embrittlement


Coatings

□ Find defects in and through polymer or composite coatings on metal where the metal side is inaccessible

- Metal corrosion, damage & weld cracks in aluminum or thick steel
- Coating debonds, voids, water intrusion & nonhomogeneities
- Polymers could be rubbers or urethanes, thick (several inches) or thin (~1/8 inch)

Detect water / leaks through installed pipe lagging

Technology Interests

Portable, real-time, and reliable wide area impact damage inspection in composites

Ruggedized for at-sea solutions or dock-side environment

Structural Health Monitoring (SHM)

- Detect and localize cracks, precursors to cracks, corrosivity, corrosion, fatigue & impact damage
 - » In-situ detection of cracks as they occur
- Key qualities: small footprint, distributed, non-invasive, remote response
- Sensor and modeling solutions

Safer alternatives to RT

- Goal: Find new technologies or new combinations of technologies which can solve Navy NDT&E needs.
 - Some non-new technologies may be new to the application
- □ Key values: Reliability, accuracy, ruggedness & speed
 - Secondary factors: Portability, ease of use, & real-time analysis
- □ Challenges: Environment / Biologics, thick materials, large structures
- **□** Focuses:
 - **Tech interests:** SHM, portable, real-time, & at-sea solutions
 - **Defects:** Cracks, debonds, voids, water intrusion, degradation, & corrosion
 - Materials: Composites, polymers, & metals

Questions?

Thanks to SEA05P2, ONR332, PMS450D, PMS392T, and NUWC-NPT for contributions to this brief.